способ получения 1-13с-каприловой кислоты

Классы МПК:C07C53/126 кислоты, содержащие более четырех атомов углерода
C07C51/14 по углерод-углеродной ненасыщенной связи органических соединений
C07B59/00 Введение изотопов элементов в органические соединения
C07C51/41 получение солей карбоновых кислот конверсией кислот или их солей в соли с тем же остатком карбоновой кислоты
Автор(ы):, ,
Патентообладатель(и):Общество с ограниченной ответственностью "Ростхим" (ООО "Ростхим") (RU),
Государственное унитарное предприятие г. Москвы "Международный научный и клинический центр "Интермедбиофизхим" (ГУП "МНКЦ "Интермедбиофизхим") (RU)
Приоритеты:
подача заявки:
2008-05-05
публикация патента:

Изобретение относится к способу получения 1- 13С-каприловой кислоты, которая используется в качестве диагностического препарата при диагностике моторно-эвакуаторной функции желудка. Способ заключается в реакции гидрокарбоксилирования 1-гептена с монооксидом углерода 13СО и водой при температуре 100-170°С и давлении не более 5 МПа в присутствии растворителя и каталитической системы, включающей комплексное соединение палладия и трифенилфосфин в соотношении, взятом из диапазона от 1:2 до 1:100, где в качестве растворителя используют диоксан и/или ароматический углеводород. Способ позволяет получить 1-13C-каприловую кислоту с высокой изотопной чистотой - 98-99%, а также повысить экономическую эффективность процесса за счет увеличения степени использования изотопного сырья - 13СО. 4 з.п. ф-лы.

Формула изобретения

1. Способ получения каприловой кислоты со стабильным изотопом углерода (1-13C) реакцией гидрокарбоксилирования 1-гептена с монооксидом углерода 13СО и водой при температуре 100-170°С и давлении не более 5 МПа, в присутствии растворителя и каталитической системы, включающей комплексное соединение палладия и трифенилфосфин в соотношении, взятом из диапазона от 1:2 до 1:100, отличающийся тем, что в качестве растворителя используют диоксан и/или ароматический углеводород.

2. Способ по п.1, отличающийся тем, что процесс проводят при 140-160°С.

3. Способ по п.1, отличающийся тем, что процесс проводят под давлением 0,5-1,0 МПа.

4. Способ по п.1, отличающийся тем, что соотношение между комплексным соединением палладия и трифенилфосфином берут из диапазона от 1:10 до 1:40.

5. Способ по п.1, отличающийся тем, что в реакционную смесь дополнительно вводят соляную кислоту.

Описание изобретения к патенту

Изобретение относится к органической химии, в частности к способам получения насыщенных алифатических карболовых кислот, содержащих стабильные изотопы углерода 13С, и в частности 1-13С-каприловой кислоты. Данное соединение используется в качестве диагностического препарата для диагностики моторно-эвакуаторной функции желудка.

Анализ научно-технической литературы показывает, что известен способ получения энантовой кислоты, содержащей радиоактивный изотоп углерода 14С в положении 1 молекулы кислоты (карбонильный атом углерода) (см., например, А.М.Мэррей, Д.Л.Уильямс. "Синтезы органических соединений с изотопами углерода". М., 1961 г., с.39). Известный способ представляет собой многостадийный процесс взаимодействия йодистого метила-14С с дигидрорезорцинолятом калия с образованием 2-метил-14С-дигидрорезорцина и последующего восстановления его раствором, содержащим едкий натр, диэтиленгликоль и 85%-ный гидразингидрат с образованием 1-14С-энантовой кислоты с выходом 39,6% в расчете на йодистый метил-14С.

К сожалению, известный способ получения карбоновых кислот осложнен тем, что состоит из нескольких стадий, а также использованием соединений с радиоактивным изотопом углерода 14С. Другим недостатком известного способа является невысокий выход целевого продукта по изотопному сырью.

Ранее нами был предложен способ получения 1-13С-каприловой кислоты (пат. РФ 2311402, МКИ7 С07С 51/14, 2007 г.) реакцией гидрокарбоксилирования 1-гептена - его взаимодействием с монооксидом углерода 13СО и водой при температуре 100-170°С и давлении, не превышающем 5,0 МПа, в смешанном растворителе - пропионовая кислота и о-ксилол - в присутствии каталитической системы, содержащей соединение палладия в виде комплекса PdCl2(PPh3)2 и трифенилфосфин РРh3, взятые в соотношении из диапазона от 1:2 до 1÷100 соответственно. Селективность по каприловой кислоте составляет 98%. Выход 1-13С-каприловой кислоты в расчете на поглощенный 13СО составляет 100%. В то же время степень изотопного обогащения составила 80%, поэтому выход целевой кислоты на 13СО составил 78,4% от теоретического.

Известно, что карбоновые кислоты в условиях карбонилирования олефинов в растворах комплексов палладия и родия могут подвергаться разложению (декарбонилированию) с выделением монооксида углерода (J.Tsuji. Palladium. Reagents and Catalysts. Chichester: John Wiley & Sons: 1998, p.385, 537). В этом случае образующийся немеченый СО будет также взаимодействовать с исходным олефином с образованием соответствующей карбоновой кислоты, что и могло являться причиной снижения степени изотопного обогащения (изотопной чистоты) в предложенном нами способе. При этом выход 1-13 С-каприловой кислоты на исходный 13СО будет ниже за счет снижения доли исходных реагентов, превращаемых в целевую 1-13С-каприловую кислоту.

Таким образом, недостатком описанного способа является невысокая степень изотопного обогащения 1-13С-каприловой кислоты.

В рамках данного изобретения решается задача разработки одностадийного способа получения каприловой кислоты со стабильным изотопом углерода 13С в положении 1 молекулы кислоты (карбонильный атом углерода) с изотопной чистотой не менее 98%, увеличения выхода целевой кислоты в расчете на изотопное сырье, повышения экономической эффективности процесса.

Поставленная задача решается тем, что каприловую кислоту со стабильными изотопами углерода 13С в положении 1 получают реакцией гидрокарбоксилирования 1-гептена - его взаимодействием с монооксидом углерода 13 СО и водой при температуре 100-170°С и давлении, не превышающем 5,0 МПа, в растворе каталитической системы, содержащей комплексное соединение палладия и трифенилфосфин РРh3, взятые в соотношении из диапазона от 1:2 до 1:100, с использованием в качестве растворителя диоксана, либо ароматических углеводородов - бензола, толуола, ксилола, либо их смесей с диоксаном.

Задача решается также тем, что используют давление 13 СО от 0,5 до 1,0 МПа.

Задача решается также тем, что используют температуру от 140 до 160°С.

Задача решается также тем, что используют каталитическую систему с соотношением комплексного соединения палладия и трифенилфосфина из диапазона от 1:10 до 1:40.

Задача решается также тем, что в реакционную смесь дополнительно вводят соляную кислоту.

При проведении процесса при температуре ниже 140°С реакция протекает медленно, а при температуре выше 160°С разрушается комплексное соединение палладия с выделением металлического палладия.

При давлении ниже 0,5 МПа снижается скорость протекания процесса, а при давлении выше 1,0 МПа уменьшается селективность процесса.

При соотношении комплексное соединение палладия:трифенилфосфин менее 1:10 уменьшается устойчивость катализатора, а при соотношении более 1:40 уменьшается скорость протекания процесса.

Сущность изобретения иллюстрируется нижеприведенными примерами.

Пример 1

В автоклав из нержавеющей стали объемом 200 мл, размещенный на столике магнитной мешали, помещают 0,07 г PdCl2(PPh3)2 , 2,62 г PPh3, 5,7 мл 1-гептена, 0,36 мл Н2 O. В качестве растворителя используют смесь, состоящую из 9,6 мл о-ксилола и 4,7 мл диоксана. Автоклав герметизируют, вакуумируют, заполняют монооксидом углерода 13СО и нагревают до температуры 150°С. Затем доводят давление до рабочего (0,5 МПа) и поддерживают постоянным в течение всего опыта. Через 3 часа выключают перемешивание и обогрев, охлаждают автоклав до комнатной температуры и сбрасывают давление. Автоклав разгружают и анализируют реакционную смесь методом газожидкостной хроматографии (ГЖХ).

Хроматографический анализ продуктов синтеза проводят на газовом хроматографе с пламенно-ионизационным детектором; используют металлическую колонку размером 3 м×3 мм, заполненную Chromaton N-AW-DMCS (0,16-0,20 мм) с 3% Н3РО4 , пропитанным 10% полиэтиленгликольадипината. В качестве внутреннего стандарта используют гексадекан.

Для определения изотопной чистоты 1-13С-каприловой кислоты ее выделяют из реакционной массы вакуумной дистилляцией и анализируют методом спектроскопии ЯМР на ядрах 13С (25°С, раствор в CDCl3). Используют ЯМР-спектрометр АМ-360 фирмы Bruker с рабочей частотой 360 МГц.

Селективность реакции по каприловой кислоте составила 95,5%, при этом степень превращения 13СО близка к 100%. Изотопная чистота целевой 1-13С-каприловой кислоты составляет 99%, а ее выход в расчете на поглощенный 13СО - 94,5% от теоретического. В ходе реакции катализатор стабилен и не разрушается с выделением металлического палладия.

Пример 2

Реакцию проводят так же, как в примере 1, однако в исходную смесь добавляют 0,02 мл НСl конц. и проводят реакцию в течение 4 часов.

Селективность реакции по каприловой кислоте составила 96,7%. Изотопная чистота полученной 1- 13С-каприловой кислоты - 99%, а ее выход при полной конверсии 13СО - 95,7% от теоретического. Катализатор не разрушается.

Пример 3

Реакцию проводят так же, как в примере 1, однако рабочее давление монооксида углерода 13СО равно 1,0 МПа.

Селективность реакции по каприловой кислоте составила 91,9%. Выход 1-13С-каприловой кислоты в расчете на 13СО - 90,1% от теоретического, ее изотопная чистота - 98%. В ходе процесса катализатор стабилен.

Пример 4

Реакцию проводят так же, как в примере 1, однако в качестве растворителя используют 14,3 мл диоксана и проводят реакцию в течение 6 часов.

Селективность реакции по каприловой кислоте составила 94,5%. Изотопная чистота полученной 1-13С-каприловой кислоты составляет 99%, а ее выход при полной конверсии 13 СО - 93,6% от теоретического. Катализатор стабилен и не разрушается с выделением металлического палладия.

Пример 5

Реакцию проводят так же, как в примере 1, однако в качестве растворителя используют 14,3 мл о-ксилола и проводят реакцию в течение 11,5 часов.

Селективность реакции по каприловой кислоте составила 81,0%. Выход 1-13С-каприловой кислоты в расчете на 13СО при полном его поглощении - 79,4% от теоретического, ее изотопная чистота - 98%. В ходе реакции катализатор стабилен.

Пример 6

Реакцию проводят так же, как в примере 1, однако в качестве растворителя используют 14,3 мл бензола и проводят реакцию в течение 8 часов.

Селективность реакции по каприловой кислоте составила 92,2%. Изотопная чистота полученной 1-13С-каприловой кислоты составляет 99%, а ее выход в расчете на 13 СО - 91,3% от теоретического. Катализатор стабилен.

Пример 7

Реакцию проводят так же, как в примере 1, однако в качестве растворителя используют 14,3 мл толуола и проводят реакцию в течение 5 часов.

Селективность реакции по каприловой кислоте составила 94,8%. Выход 1-13 С-каприловой кислоты в расчете на 13СО при полном его поглощении - 92,9% от теоретического, ее изотопная чистота - 98%. В ходе реакции катализатор стабилен.

Пример 8

Реакцию проводят так же, как в примере 1, однако в качестве растворителя используют 14,3 мл n-ксилола и проводят реакцию в течение 10 часов.

Селективность реакции по каприловой кислоте составила 81,5%. Выход 1-13С-каприловой кислоты в расчете на 13СО при полном его поглощении - 80,7% от теоретического, ее изотопная чистота - 99%. Катализатор не разрушается в ходе процесса.

Пример 9

Реакцию проводят так же, как в примере 1, однако в качестве каталитической системы используют 0,07 г комплекса Рd(ОАс)2(РРh 3)2 и 1,31 г РРh3 и проводят реакцию при температуре 110°С в течение 4 часов.

Селективность реакции по каприловой кислоте составила 94,0%. Изотопная чистота полученной 1-13С-каприловой кислоты составляет 99%, а ее выход при полной конверсии, 13 СО - 93,1% от теоретического. Катализатор стабилен и не разрушается с выделением металлического палладия.

Преимущество данного способа состоит в том, что он позволяет в одну стадию и в достаточно мягких условиях (0,3-1,0 МПа) получать 1- 13С-каприловую кислоту с высокой изотопной чистотой - 98-99% - за счет замены пропионовой кислоты, используемой в качестве компонента растворителя, на диоксан, либо ароматический углеводород из ряда: бензол, толуол, ксилол, либо его смесь с диоксаном. Способ позволяет повысить экономическую эффективность процесса получения 1-13С-каприловой кислоты за счет увеличения степени использования (выхода) изотопного сырья - 13 СО. Кроме того, способ позволяет получать изотопные диагностические препараты, не содержащие опасных радиоактивных изотопов.

Класс C07C53/126 кислоты, содержащие более четырех атомов углерода

способ получения стеарата кальция -  патент 2510617 (10.04.2014)
способ получения свинца стеариновокислого двухосновного стабилизатора поливинилхлорида -  патент 2506253 (10.02.2014)
способ получения производных насыщенных карбоновых кислот -  патент 2430905 (10.10.2011)
способ получения карбоксилатов редкоземельных элементов -  патент 2382760 (27.02.2010)
противовоспалительные средства -  патент 2365585 (27.08.2009)
способ получения карбоксилатов циркония -  патент 2332398 (27.08.2008)
способ получения насыщенных алифатических карбоновых кислот и способы получения их производных (варианты) -  патент 2311402 (27.11.2007)
способ получения карбоновых кислот, спиртов или сложных эфиров (варианты) -  патент 2268872 (27.01.2006)
способ получения стеарата кальция -  патент 2259993 (10.09.2005)
способ получения монокарбоновых кислот c4-c8 -  патент 2242456 (20.12.2004)

Класс C07C51/14 по углерод-углеродной ненасыщенной связи органических соединений

Класс C07B59/00 Введение изотопов элементов в органические соединения

реагенты и способы введения радиоактивной метки -  патент 2524284 (27.07.2014)
меченые молекулярные визуализирующие агенты, способы получения и способы применения -  патент 2523411 (20.07.2014)
равномерномеченный тритием пиро-glu-his-pro-nh2 -  патент 2513852 (20.04.2014)
лиганды для визуализации иннервации сердца -  патент 2506256 (10.02.2014)
равномерномеченный тритием (3as,5s,6r,7ar,7bs,9as,10r,12as,12bs)-10-[(2s,3r,4r,5s)-3,4-дигидрокси-5,6-диметил-2-гептанил]-5,6-дигидрокси-7а,9а-диметилгексадекангидро-3н-бензо[c]индено[5,4-е]оксепин-3-он -  патент 2499786 (27.11.2013)
способ увеличения радиоактивности меченных тритием органических соединений при их получении с помощью метода термической активации трития -  патент 2499785 (27.11.2013)
селективное введение радиоактивной метки в биомолекулы -  патент 2491958 (10.09.2013)
способ получения дитритийдифторбензола источника фторированных нуклеогенных фенил-катионов -  патент 2479561 (20.04.2013)
способ получения радиоактивного, меченного фтором органического соединения -  патент 2476423 (27.02.2013)
способ получения (13c2-карбонил)диметилфталата -  патент 2470008 (20.12.2012)

Класс C07C51/41 получение солей карбоновых кислот конверсией кислот или их солей в соли с тем же остатком карбоновой кислоты

способ получения трифторацетата палладия -  патент 2529036 (27.09.2014)
способ получения стеарата цинка -  патент 2516663 (20.05.2014)
способ получения стеарата кальция -  патент 2510617 (10.04.2014)
способ получения свинца стеариновокислого двухосновного стабилизатора поливинилхлорида -  патент 2506253 (10.02.2014)
способ получения аммонийных солей фумаровой или янтарной кислоты -  патент 2490249 (20.08.2013)
способ получения раствора солей двухосновных кислот и диаминов -  патент 2488603 (27.07.2013)
способ получения двухводного ацетата цинка -  патент 2483056 (27.05.2013)
способ получения диизопропиламмония дихлорацетата -  патент 2480212 (27.04.2013)
способ получения высокочистого безводного ацетата цинка -  патент 2476418 (27.02.2013)
способ получения безводного ацетата свинца (ii) для приготовления безводных пленкообразующих растворов цирконата-титаната свинца -  патент 2470867 (27.12.2012)
Наверх