Соединения магния – C01F 5/00

МПКРаздел CC01C01FC01F 5/00
Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C01 Неорганическая химия
C01F Соединения бериллия, магния, алюминия, кальция, стронция, бария, радия, тория или редкоземельных металлов
C01F 5/00 Соединения магния

C01F 5/02 .получение оксида магния 
C01F 5/04 ..окислением металлического магния 
C01F 5/06 ..термическим разложением соединений магния
обжиг магнезита или доломита  C 04B 2/10
C01F 5/08 ...прокаливанием гидроксида магния 
C01F 5/10 ...термическим разложением хлорида магния водяным паром 
C01F 5/12 ...термическим разложением сульфата магния с восстановлением или без него 
C01F 5/14 .получение гидроксида магния 
C01F 5/16 ..обработкой оксида магния, например обожженного доломита водой или растворами солей, не содержащих магний 
C01F 5/20 ..осаждением из растворов солей магния аммиаком 
C01F 5/22 ..из соединений магния взаимодействием их с гидроксидами щелочных металлов, оксидами или гидроксидами щелочноземельных металлов 
C01F 5/24 .карбонаты магния 
C01F 5/26 .галогениды магния 
C01F 5/28 ..фториды 
C01F 5/30 ..хлориды 
C01F 5/32 ...получение безводного хлорида магния хлорированием соединений магния 
C01F 5/34 ...обезвоживание хлорида магния, содержащего кристаллизационную воду 
C01F 5/36 ..бромиды 
C01F 5/38 .нитраты магния 
C01F 5/40 .сульфаты магния
двойные сульфаты магния с натрием или калием  C 01D 5/12, с другими щелочными металлами  C 01D 15/06C 01D 17/00
C01F 5/42 .сульфиты магния 

Патенты в данной категории

ОСАЖДЕННЫЙ КАРБОНАТ МАГНИЯ

Настоящее изобретение относится к способу получения гидромагнезита в водной среде. Способ включает следующие стадии: a) предоставление, по меньшей мере, одного источника оксида магния; b) предоставление газообразного CO2 и/или карбонат содержащих анионов; c) гашение упомянутого источника оксида магния со стадии а) для превращения оксида магния, по меньшей мере, частично, в гидроксид магния; d) приведение в контакт полученного гидроксида магния со стадии с) с упомянутым газообразным CO 2 и/или карбонат содержащими анионами со стадии b) для превращения гидроксида магния, по меньшей мере, частично, в осажденный несквегонит; и e) обработку полученного на стадии d) осажденного несквегонита на стадии теплового старения. При этом осажденный несквегонит, полученный на стадии d), измельчают перед стадией теплового старения, осуществляемого на стадии е). Также предложены гидромагнезит и его применение в качестве покрытия для бумаги, в качестве минерального наполнителя для бумаги, а также в качестве огнезащитного состава. Изобретение позволяет получить гидромагнезит, имеющий особую пластинчатую морфологию в сочетании с уменьшенным размером частиц и высокую степень белизны. 4 н. и 14 з.п. ф-лы, 1 ил., 1 табл., 2 пр.

2518895
выдан:
опубликован: 10.06.2014
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА МАГНИЯ

Изобретение относится к области химии. Оксид магния получают путем измельчения исходного сырья - брусита. В измельченное сырье добавляют маточный раствор, затем его выщелачивают азотной кислотой с добавлением барита. Азотнокислую пульпу нейтрализуют пылью электрофильтров. Осадок отделяют фильтрацией и промывают с получением промывочных вод, направляемых на стадию выщелачивания. Фильтрат, образовавшийся после отделения осадка, охлаждают до температуры кристаллизации гексагидрата нитрата магния, отделяют кристаллы гексагидрата нитрата магния от маточного раствора, который направляют в выпариватель для выведения кальция и получения удобрений. Кристаллы гексагидрата нитрата магния подвергают термическому гидролизу перегретыми парами воды с получением оксида магния и паронитрозных газов, направляемых в абсорбер для регенерации азотной кислоты. Полученную азотную кислоту направляют на выщелачивание исходного сырья. Изобретение позволяет повысить качество продукта и снизить его потери. 9 з.п. ф-лы, 1 ил., 2 пр.

2513652
выдан:
опубликован: 20.04.2014
СМЕШАННЫЕ СОЕДИНЕНИЯ МЕТАЛЛОВ ДЛЯ ПРИМЕНЕНИЯ В КАЧЕСТВЕ АНТАЦИДОВ

Изобретение относится к применению смешанных соединений металлов для получения лекарственного средства, предназначенного для нейтрализации желудочной кислоты или буферного действия на нее, а также для лечения состояния или заболевания, связанного с высокими уровнями кислоты в желудке. Смешанное соединение металлов является соединением формулы (I):

2510265
выдан:
опубликован: 27.03.2014
УСОВЕРШЕНСТВОВАННЫЙ ИНТЕГРИРОВАННЫЙ ХИМИЧЕСКИЙ ПРОЦЕСС

Изобретение относится к технологии превращения диоксида углерода в твердый материал с использованием минеральной карбонизации. Способ содержит следующие стадии: (а) прямую термоактивацию магнийсиликат-гидроксидного минерального сырья путем сжигания топлива, в результате чего образуется активированное сырье; (b) выделение из активированного сырья оксидов металлов при существенном исключении отделения оксида магния и силиката магния, в результате чего образуется остаточное активированное сырье; (с) до или после стадии отделения суспендирование активированного сырья в растворителе с образованием суспензии; и (d) контактирование суспензии остаточного активированного сырья с диоксидом углерода, в результате чего диоксид углерода превращается в карбонат магния. Изобретение позволяет улучшить технико-экономические показатели и уменьшить количество выбрасываемого в атмосферу диоксида углерода. 24 з.п. ф-лы, 4 ил.

2504426
выдан:
опубликован: 20.01.2014
ПЕЧЬ КИПЯЩЕГО СЛОЯ ДЛЯ ОБЕЗВОЖИВАНИЯ ХЛОРМАГНИЕВОГО СЫРЬЯ

Изобретение относится к цветной металлургии. Печь кипящего слоя для обезвоживания хлормагниевого сырья включает корпус 1 печи в виде шахты с патрубком 3 для подачи хлормагниевого сырья и патрубком 4 для вывода готового продукта, стальные компенсаторы со слоем огнеупорной футеровки, установленные с двух сторон в шахте печи под углом к корпусу с образованием пространства между компенсатором и корпусом 1, перегородки 8, разделяющие шахту на камеры 9, 10, 11, газораспределительную решетку в виде подины с отверстиями, закрытыми уголками 15, разделенными горизонтальной перегородкой на верхнюю и нижнюю части, коллектор 19 для подвода холодного воздуха в уголки 15 и коллектор 20 для отвода нагретого воздуха из уголков 15, трубопроводы, соединяющие уголки 15 с коллекторами, топки 23 и камеры 24 для топочных газов. Коллектор 19 и коллектор 20 размещены в пространстве между корпусом 1 и компенсаторами по всей длине печи. В компенсаторах и в слое огнеупорной футеровки выполнены отверстия, в которых размещены трубопроводы, соединяющие уголки 15 с коллекторами 19 и 20. Изобретение позволяет повысить производительность печи. 4 з.п. ф-лы, 4 ил.

2503618
выдан:
опубликован: 10.01.2014
СПОСОБ УТИЛИЗАЦИИ ОТХОДОВ СЕРНОЙ КИСЛОТЫ

Изобретение относится к области химии. Отходы серной кислоты при синтезе 2,2'-дихлордиэтилформаля производства полисульфидного полимера, содержащие примеси этиленхлоргидрина и параформальдегида, обрабатывают гидроксидом магния до получения среды с кислотностью рН=6,5-7,0, из которой декантацией отделяют примеси этиленхлоргидрина и параформальдегида с возможностью рециклирования их в синтезе 2,2'-дихлордиэтилформаля. Оставшийся водный раствор образовавшегося сульфата магния после разбавления его водой до концентрации 200-270 г/дм3 направляют на стадию поликонденсации производства полисульфидного полимера для его использования в качестве диспергатора. Изобретение позволяет экономить сырьевые ресурсы и предотвращает загрязнение окружающей среды высокотоксичными отходами. 1 пр.

2500614
выдан:
опубликован: 10.12.2013
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО КАРНАЛЛИТА

Изобретение относится к способу получения карналлита из хлормагниевых растворов. Способ включает их очистку и концентрирование, смешение с твердым калийхлорсодержащим отработанным электролитом. После смешения проводят обезвоживание путем нагрева смеси до содержания кристаллизационной воды 2-6 молей на 1 моль KCl·MgCl 2 с выделением отходящих газов из зоны нагрева. Перед смешением отработанный электролит нагревают выделенными из зоны нагрева газами. При этом массовое отношение хлорида калия к хлориду магния в смеси поддерживают 0,78-0,83, а крупность отработанного электролита составляет менее 0,315 мм. Техническим результатом является упрощение и интенсификация процесса, повышение качества синтетического карналлита и снижение энергозатрат. 1 табл., 4 пр.

2473467
выдан:
опубликован: 27.01.2013
СПОСОБ ПОЛУЧЕНИЯ КАРНАЛЛИТА

Изобретение относится к области химии и может быть использовано для получения карналлита, который является сырьем для магниевой промышленности. Горячие карналлитовые растворы подвергают очистке от механических примесей и кристаллизации карналлита при охлаждении растворов на установках регулируемой вакуум-кристаллизации с получением кристаллов карналлита со средним размером частиц более 0,3 мм. Полученную пульпу подвергают гидравлической классификации сгущением с выводом мелких фракций. Сгущенную пульпу дополнительно подвергают гидроклассификации на циклонах по граничному зерну 0,2 мм, а затем центрифугированию. Способ позволяет упростить процесс и повысить качество карналлита. 1 з.п. ф-лы, 1 табл., 2 пр.

2458008
выдан:
опубликован: 10.08.2012
СПОСОБ СИНТЕЗА ФТОРИДА МАГНИЯ

Изобретение относится к неорганической химии, а именно к способам получения фторида магния. Способ заключается в том, что исходный порошок соединения магния, например MgCO3 или MgO, насыщают парами HF из газовой фазы, которые выделяются из водного раствора плавиковой кислоты, не имеющей физического контакта с этим порошком. Технический результат заключается в повышении эффективности технологии и снижении ее стоимости.

2443629
выдан:
опубликован: 27.02.2012
СПОСОБ ОЧИСТКИ БИШОФИТА

Изобретение относится к способу очистки раствора бишофита, который применяется в качестве лекарственного и бальнеологического средства, от техногенной примеси железа. Заявленный способ включает адсорбцию на оксиде магния с использованием окислителей, таких как пероксид магния в количестве 0,5-1 г/л или 30% раствор пероксида водорода в количестве 0,1-1 г/л, при этом стадию перемешивания осуществляют путем аэрации струей сжатого воздуха в течение 1-8 ч. Способ обеспечивает повышение эффективности очистки от соединений железа, сокращение длительности процесса и упрощение его аппаратурного оформления. 2 табл.

2442593
выдан:
опубликован: 20.02.2012
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА МАГНИЯ С РАЗВИТОЙ УДЕЛЬНОЙ ПОВЕРХНОСТЬЮ

Изобретение относится к области химии и может быть использовано для получения оксида магния. Магниевую стружку обрабатывают абсолютным изопропанолом с добавлением четыреххлористого углерода. Полученный раствор изопропилата магния отстаивают, фильтруют, фильтрат постепенно нагревают в муфельной печи до 340-350°С и выдерживают при этой температуре в течение 4 часов. Изобретение позволяет получить оксид магния с развитой удельной поверхностью.

2438976
выдан:
опубликован: 10.01.2012
СПОСОБ ПРОМЫШЛЕННОГО ПРОИЗВОДСТВА ЧИСТОГО MgCO3 ИЗ ГОРНОЙ ПОРОДЫ, СОДЕРЖАЩЕЙ ОЛИВИН

Изобретение может быть использовано в химической промышленности. Способ промышленного производства чистого MgCO 3 включает измельчение содержащей оливин горной породы и контакт измельченной породы с водой и CO2. На первой стадии, проводимой под давлением, происходит реакция растворения согласно уравнению Mg2SiO4(s)+4H+ =2Mg2++SiO2(aq)+2H2O. Затем на второй стадии проводят осаждение при более высокой величине рН. При этом происходят следующие реакции: Mg2++HCO 3 -=MgCO3(s)+H+ и Mg 2++СО3 2-=MgCO3(s). Присутствие ионов НСО 3 - и H+ является, главным образом, результатом взаимодействия СO2 и воды. Изобретение позволяет производить чистый карбонат магния из горной породы, связывая при этом свободный углекислый газ. 18 з.п. ф-лы, 4 ил., 2 табл.

2437833
выдан:
опубликован: 27.12.2011
МАТЕРИАЛ

Гранулированный материал включает (а) по крайней мере 50% по массе в расчете на массу гранулированного материала твердого нерастворимого в воде неорганического смешанного соединения слоистых двойных гидроксидов металлов, способного связывать фосфат, и которое содержит железо (III) и по крайней мере один из следующих металлов: магний, кальций, лантан или церий; (б) от 3 до 10% масс. не связанной химически воды в расчете на массу гранулированного материала, (в) не более 47% масс. наполнителя в расчете на массу гранулированного материала. Гранулированный материал получают методом влажного гранулирования. Гранулированный материал по изобретению предназначен для применения в терапии состояния или заболевания, связанного с неблагоприятными содержаниями фосфата в организме. Изобретение обеспечивает поддержание физической целостности гранул и порционных дозировок в процессе хранения, хорошее связывание фосфата после приема гранул внутрь без их избыточного разрушения во рту. 9 н. и 13 з.п. ф-лы, 8 табл.

2437650
выдан:
опубликован: 27.12.2011
СПОСОБ ПОЛУЧЕНИЯ ИСКУССТВЕННОГО ТЕХНИЧЕСКОГО БИШОФИТА

Изобретение относится к области химии и может быть использовано для производства технического бишофита, который используют в строительстве, при обработке дорожных покрытий, а также в качестве источника магния. Проводят реакцию абгазной соляной кислоты с карбонатом магния при соотношении абгазной соляной кислоты и карбоната магния, равном 0,4-0,6:0,4-0,6. Реакцию проводят при температуре 40-90°С и постоянном перемешивании реакционной смеси. Изобретение позволяет упростить технологию процесса, снизить себестоимость продукта и расширить сферы его применения. 1 ил.

2436733
выдан:
опубликован: 20.12.2011
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ РАССОЛОВ ХЛОРИДНОГО КАЛЬЦИЕВОГО И ХЛОРИДНОГО МАГНИЕВОГО ТИПОВ (ВАРИАНТЫ)

Изобретение относится к области химии и может быть использовано для переработки гидроминерального сырья. Согласно первому варианту проводят совместное осаждение карбоната кальция и гидроксида магния из рассола с получением раствора, содержащего хлорид натрия, который упаривают. Выделенные кристаллы хлорида натрия растворяют в воде и раствор хлорида натрия подвергают электролизу для получения газообразного хлора и католита - раствора гидроксида натрия. Газообразный хлор используют для окисления бромид-ионов. Католит после карбонизации углекислым газом используют для осаждения карбоната и гидроксида магния. Осадок репульпируют в растворе хлорида кальция и подвергают карбонизации для получения карбоната кальция и раствора хлорида магния, осадок отделяют. Из части раствора хлорида магния осаждают магнезию углекислую. Ее прокаливают для получения оксида магния и углекислого газа. Другую часть раствора хлорида магния упаривают для получения бишофита. Из раствора после отделения кристаллов хлорида натрия осаждают карбонат лития. Согласно второму варианту из рассола осаждают раздельно карбонат кальция, а затем магнезию углекислую. Газообразный хлор используют для получения соляной кислоты. Часть магнезии углекислой прокаливают для получения оксида магния, другую часть магнезии углекислой используют для получения бишофита. Изобретения позволяют комплексно переработать природные рассолы. 2 н. и 2 з.п. ф-лы, 2 ил., 2 табл.

2436732
выдан:
опубликован: 20.12.2011
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА МАГНОТАНТАЛАТА СВИНЦА СО СТРУКТУРОЙ ТИПА ПЕРОВСКИТА

Изобретение относится к области получения оксидного порошка состава Pb(Mg1/3Ta2/3O3 ) со структурой типа перовскита и может быть использовано в изготовлении материалов для пьезотехники. Способ включает смешение соединения тантала с водными растворами солей свинца и магния в стехиометрическом отношении, отвечающем составу магнотанталата свинца со структурой типа перовскита - Pb(Mg1/3Ta2/3O3 ) и термообработку полученной суспензии. В качестве соединения тантала используют гидроксид тантала, а в качестве растворов солей магния и свинца - растворы ацетатов магния и свинца, которые вводят последовательно, при этом термообработку продукта проводят при 800-850°С. Технический результат изобретения: снижение температуры синтеза, увеличение выхода целевого продукта и повышение его чистоты. 1 табл.

2433955
выдан:
опубликован: 20.11.2011
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПРОЦЕССОМ РАСТВОРЕНИЯ СОЛЕЙ

Изобретение может быть использовано в производстве синтетического карналлита. Способ автоматического управления процессом растворения солей включает стабилизацию температуры растворения, стабилизацию концентрации полезного компонента в растворе изменением расхода сырья, определение полезного компонента с входящими в процесс потоками. При изменении величины этого расхода относительно заданного значения корректируют расход полезного компонента, поступающего в составе сырья. В качестве полезного компонента, наряду с хлоридом калия, вводят хлорид магния. Его концентрацию во входном потоке сырья стабилизируют упариванием исходного раствора хлорида магния. Дополнительно измеряют содержание хлорида магния в упаренном растворе, рассчитывают расход упаренного раствора по следующей зависимости: , где - расход упаренного раствора хлорида магния, т; G KCl - расход хлорида калия в пересчете на 100% продукт, т; - регламентное содержание MgCl2 в упаренном растворе, 35±0,5%. Вычисленное значение подают в качестве задания в систему управления расходом раствора. Изобретение позволяет повысить точность управления процессом растворения хлорида калия в растворе хлорида магния.

2427416
выдан:
опубликован: 27.08.2011
СПОСОБ ПОЛУЧЕНИЯ ОРГАНИЧЕСКИ МОДИФИЦИРОВАННОГО СЛОИСТОГО ДВОЙНОГО ГИДРОКСИДА

Способ получения органически модифицированного слоистого двойного гидроксида включает: получение суспензии, включающей источник иона двухвалентного металла, выбранного из оксидов и гидроксидов двухвалентного металла, и источник иона трехвалентного металла, выбранного из оксидов и гидроксидов трехвалентного металла; термическую или сольвотермическую обработку указанной суспензии для получения слоистого двойного гидроксида. Органический анион добавляют до или во время образования слоистого двойного гидроксида, или вслед за образованием слоистого двойного гидроксида. Органический анион имеет 8 или более атомов углерода, при этом анион дезоксихолевой кислоты не является единственным органическим анионом. Источник иона двухвалентного металла и/или источник иона трехвалентного металла измельчают, в качестве суспендирующей среды используют воду. В результате получают органически модифицированный слоистый двойной гидроксид, имеющий расстояние между индивидуальными слоями слоистого двойного гидроксида более 1,5 нм, включающий органический анион в качестве компенсирующего заряд аниона. Изобретение позволяет снизить количество потоков вредных отходов, образующихся в результате производства органически модифицированных слоистых двойных гидроксидов. 5 з.п. ф-лы.

2424975
выдан:
опубликован: 27.07.2011
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ХРОМА (III)

Изобретение может быть использовано в электротехнической, приборостроительной, машиностроительной и металлургической отраслях промышленности, в кожевенном производстве, где применяют соединения хрома (III). Для осуществления способа проводят обработку сточных вод магнийсодержащим материалом, состоящим из карбоната магния (51,62-52,84%) и гидроксида магния (46,13-47,28%). Материал измельчают до размера зерен от 3 до 10 мм. Полное удаление ионов хрома (III) из сточных вод происходит при контакте фаз в течение 20-30 минут. Способ позволяет повысить скорость процесса очистки сточных вод от ионов хрома (III) при сохранении высокой степени очистки, а также удалять из воды ионы железа (III) и меди (II). Изобретение также расширяет круг применяемых для обработки сточных вод эффективных и недорогих реагентов. 3 табл.

2424192
выдан:
опубликован: 20.07.2011
СПОСОБ ПОЛУЧЕНИЯ МИКРО- И/ИЛИ НАНОМЕТРИЧЕСКОГО ГИДРОКСИДА МАГНИЯ

Изобретение относится к области химии, а именно к способу получения микро- и/или нанометрического гидроксида магния, в том числе с модифицированной поверхностью. В водной среде хлорида магния с гидроксидом и хлоридом натрия, или гидроксидом и хлоридом калия, или гидроксидом и хлоридом кальция, или гидроксидом и хлоридом аммония осуществляют взаимодействие в один этап при температуре 10-200°С и атмосферном или аутогенном давлении или в два этапа: на первом этапе при температуре 10-100°С и атмосферном давлении, а на втором этапе - при температуре 101-200°С при аутогенном давлении с возможным модифицированием и последующим выделением гидроксида магния. Изобретение позволяет получать гидроксид магния с прогнозируемыми удельной поверхностью и размерами частиц и агломератов гидроксида магния. 8 з.п. ф-лы, 4 ил.

2422364
выдан:
опубликован: 27.06.2011
СПОСОБ ПОЛУЧЕНИЯ НАНОМЕТРИЧЕСКОГО МОНОДИСПЕРСНОГО И СТАБИЛЬНОГО ГИДРОКСИДА МАГНИЯ И ПОЛУЧАЕМЫЙ ПРОДУКТ

Изобретение относится к области химии и может быть использовано для получения нанометрического монодисперсного и стабильного Mg(OH)2 и продуктов из него. Способ включает смешение водного раствора соли магния и водного раствора щелочи, стабилизацию смешанного продукта введением разбавителя, созревание стабилизированного продукта, очистку созревшего продукта с получением частиц гидроксида магния. Водный раствор соли магния содержит поверхностно-активное вещество, представляющее собой этоксилат, и органическую кислоту. Водный щелочной раствор содержит щелочь, выбранную из группы, которая включает в себя гидроксид натрия, гидроксид калия и растворы аммиака, и диспергатор, выбранный из веществ типа полиакрилатных кислот или их солей. Разбавитель, который используется для стабилизации продукта смеси, содержит воду и тот же диспергатор, что и используемый в щелочном растворе. Разбавитель вводится при постоянном встряхивании в процессе стабилизации. В процессе стадии созревания уже стабилизированная смесь продукта подвергается механической и химической обработке при применении ультразвука, который предпочтительно находится в интервале от 20 до 45 кГц. Изобретение позволяет получать наночастцы гидроксида магния в высоких концентрациях и продукты из него. 3 н. и 12 з.п. ф-лы, 5 ил.

2415811
выдан:
опубликован: 10.04.2011
СПОСОБ КОМПЛЕКСНОЙ ОБРАБОТКИ СЕРПЕНТИНИТОВ

Изобретение может быть использовано для получения хлорида магния, кремнезема и красного пигмента. Для этого прокаленный при температуре 680-750°С серпентинит обрабатывают 4-8% раствором соляной кислоты при массовом соотношении серпентинита и соляной кислоты 1:(15-40). Затем горячую пульпу декантируют и фильтруют, осадок высушивают с получением кремнезема, а фильтрат выпаривают и отделяют кремниевую кислоту. После отделения кремниевой кислоты в виде золь-геля в раствор, содержащий хлориды магния и железа (III), добавляют соляную кислоту до получения 4-8% раствора соляной кислоты. Полученный солянокислый раствор используют для обработки новой порции серпентинита. Далее стадии декантации, фильтрации, выпаривания фильтрата, отделения кремниевой кислоты и обработки полученного раствора соляной кислотой повторяют 3-5 раз, используя новые порции прокаленного серпентинита. Концентрированный таким образом раствор при температуре 90°С смешивают с серпентинитом, фильтруют, отделяют раствор хлорида магния от осадка, содержащего гидроксид железа (III). Указанный осадок обрабатывают при температуре 350-400°С с получением красного пигмента. Изобретение позволяет упростить процесс переработки серпентинита, повысить экологическую безопасность, уменьшить затраты и отходы. 1 ил.

2407704
выдан:
опубликован: 27.12.2010
СПОСОБ ПОЛУЧЕНИЯ (СО)ПОЛИМЕРОВ ПРИ ФАЗОВЫХ ПЕРЕХОДАХ СВЕРХКРИТИЧЕСКИХ ФЛЮИДОВ И УСТРОЙСТВО ДЛЯ ЕГО ПРОВЕДЕНИЯ

Изобретение относится к способу получения (со)полимеров путем непрерывного взаимодействия, по меньшей мере, одного мономера с инициатором в присутствии диоксида углерода и, необязательно, модифицирующей добавки, осуществляемого в одной или нескольких реакционных зонах прямоточного трубчатого реактора, при поддержании в указанных зонах реакционных условий с непрерывной отгонкой газовой смеси, содержащей преимущественно непрореагированный мономер, и выделением (со)полимера. В качестве мономера применяют виниловый мономер, выбранный из группы, состоящей из винилзамещенных ароматических, гетероциклических и алициклических соединений, ненасыщенных алифатических карбоновых кислот и их производных, ненасыщенных алифатических нитрилов, сложных виниловых эфиров ароматических и насыщенных алифатических карбоновых кислот, дивинилового соединения и их смесей. Способ включает а) раздельную подачу, по меньшей мере, одного текущего потока мономера, по меньшей мере, одного текущего потока диоксида углерода, потока инициатора и, необязательно, потока модифицирующей добавки, причем указанные потоки мономера и/или диоксида углерода подают со сверхкритическим давлением; б) нагревание указанных потоков мономера и диоксида углерода, по меньшей мере, до сверхкритической температуры мономера и/или диоксида углерода с образованием сверхкритического флюида; в) объединение указанных потоков мономера, диоксида углерода, инициатора и, необязательно, модифицирующей добавки в струйном смесителе (6) трубчатого реактора с линейной скоростью, обеспечивающей давление ниже сверхкритического давления мономера и/или диоксида углерода, в течение которого происходит, по меньшей мере, частичный переход сверхкритического флюида в газовую фазу, причем период времени, в течение которого осуществляют указанное объединение, по существу составляет менее чем 1 секунду, предпочтительно менее чем 0,1 секунды; г) резкое снижение линейной скорости в прямоточном трубчатом реакторе (7) полученной реакционной смеси до значения, обеспечивающего давление выше сверхкритического давления мономера и/или диоксида углерода, в течение которого происходит, по меньшей мере, частичный переход газовой фазы в сверхкритический флюид и осуществляют взаимодействие указанной реакционной смеси по существу в адиабатических условиях с образованием полимерных частиц, в начальный период которого происходит мгновенное повышение температуры указанной реакционной смеси, по меньшей мере, примерно на 20°С, причем период времени, в течение которого осуществляют указанное взаимодействие, по существу составляет примерно от 60 до 120 секунд; д) дросселирование полученного потока полимерного раствора через редуцирующее устройство (8) в испарительный сепаратор (9) с меньшим давлением, в котором за счет резкого уменьшения плотности указанного полимерного раствора происходит переход сверхкритического флюида в твердую фазу с дальнейшим образованием полимерных частиц, причем одновременно редуцирующее устройство (8) поддерживает необходимое сверхкритическое давление мономера и/или диоксида углерода в реакционной зоне трубчатого реактора (7), после чего отводят газовый поток, содержащий преимущественно диоксид углерода, из верхней части испарительного сепаратора (9) и порошкообразный поток, содержащий преимущественно мелкодисперсные гранулы полимера из его нижней части. Также предложено устройство для получения сополимеров. Технический результат - получение (со)полимеров с высокими эксплуатационными свойствами, с более высокими уровнями длинноцепной разветвленности. 2 н. и 18 з.п. ф-лы, 1 ил.

2405001
выдан:
опубликован: 27.11.2010
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ РАСТВОРЕНИЯ КАРНАЛЛИТОВЫХ РУД

Изобретение может быть использовано в производстве синтетического карналлита. Способ управления процессом растворения карналлитовых руд включает регулирование подачи руды в зависимости от содержания полезного компонента во входных потоках и измерение температуры. Дополнительно измеряют расход растворяющего раствора, его плотность и содержание в нем хлористого магния, содержание хлористого калия в потоке карналлитовой руды. По полученным параметрам рассчитывают расход карналлитовой руды по следующей зависимости и вычисленное значение подают в качестве задания в систему управления расходом руды:

2404845
выдан:
опубликован: 27.11.2010
СПОСОБ ПОДГОТОВКИ ХЛОРМАГНИЕВОГО СЫРЬЯ К ПРОЦЕССУ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ МАГНИЯ И ХЛОРА

Изобретение относится к цветной металлургии и может быть использовано при подготовке хлормагниевого сырья к электролизу. Твердый обезвоженный карналлит загружают на стадию плавления, куда дополнительно подают расплавленный хлорид магния при массовом соотношении обезвоженный карналлит к хлориду магния, равном 1:(0,4-0,7). При загрузке расплавленного хлорида магния снижают скорость подачи твердого обезвоженного карналлита. Полученную смесь расплавленного хлорида магния и обезвоженного карналлита подают на стадию хлорирования, перемешивают хлорсодержащим газом, отстаивают, выгружают готовый продукт и подают его на электролиз. Изобретение позволяет уменьшить расход электроэнергии.

2400425
выдан:
опубликован: 27.09.2010
СПОСОБ ПОДГОТОВКИ КАРНАЛЛИТОВОГО СЫРЬЯ К ПРОЦЕССУ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ МАГНИЯ И ХЛОРА

Изобретение относится к цветной металлургии, а именно к способу подготовки хлормагниевого сырья методом обезвоживания к процессу электролитического получения магния и хлора. Способ включает подачу сырья в многокамерную печь кипящего слоя, первую стадию обезвоживания сырья путем последовательного передвижения сырья через ряд горизонтально расположенных камер печи и подачи в каждую камеру печи топочных газов, образованных путем сжигания в топке печи смеси природного газа и хлорсодержащих газов, вторую стадию обезвоживания в хлораторе с получением безводного карналлита для электролитического получения магния и хлора и утилизацию отходящих газов второй стадии обезвоживания, которые подают при температуре не менее 125°С в топку каждой камеры печи кипящего слоя на сжигание с природным газом, поддерживая в смеси соотношение отходящих газов к природному газу равным (15-25):1. Обеспечивается снижение материальных затрат на утилизацию и извлечение хлора из отходящих газов и предотвращение загрязнения окружающей среды. 1 з.п. ф-лы.

2399588
выдан:
опубликован: 20.09.2010
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАГИДРАТА НИТРАТА МАГНИЯ ПУТЕМ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА

Изобретение относится к химической промышленности и может быть использовано при получении гексагидрата нитрата магния. Для этого на первой стадии серпентинит выщелачивают 20-25% раствором азотной кислоты, полученную пульпу фильтруют с образованием фильтрата и остатка, фильтрат упаривают, охлаждают и остаток от упаривания обрабатывают водой при перемешивании. Образовавшуюся суспензию фильтруют, фильтрат выпаривают, а затем охлаждают до комнатной температуры для кристаллизации гексагидрата нитрата магния. Остаток от фильтрации суспензии промывают водой с получением промывных вод. Остаток от фильтрации пульпы направляют на вторую стадию выщелачивания 30-35% раствором азотной кислоты. Полученную пульпу фильтруют, фильтрат упаривают, охлаждают до комнатной температуры, остаток от упаривания обрабатывают водой при перемешивании. Образовавшуюся суспензию фильтруют, фильтрат упаривают, охлаждают для кристаллизации гексагидрата нитрата магния, остаток от фильтрации суспензии промывают водой с получением промывных вод, полученные промывные воды объединяют с фильтратом после второй стадии выщелачивания. Изобретение позволяет повысить степень извлечения магния и улучшить качество получаемого гексагидрата нитрата магния. 3 з.п. ф-лы, 1 ил.

2395457
выдан:
опубликован: 27.07.2010
СПОСОБ ПЕРЕРАБОТКИ КАРНАЛЛИТОВОЙ ПЫЛИ ИЗ ЦИКЛОНОВ ПЕЧИ КИПЯЩЕГО СЛОЯ

Изобретение относится к способу переработки карналлитовой пыли из циклонов печи кипящего слоя. Способ включает последовательную загрузку расплавленного отработанного электролита и расплавленного хлорида магния при массовом соотношении, равном 1:(1,1-1,4), в емкость. Затем загружают карналлитовую пыль на поверхность полученной расплавленной смеси при массовом соотношении загружаемой карналлитовой пыли и расплавленной смеси отработанного электролита и хлорида магния, равном 1:(0,8-1,2), при температуре 700-720°С и перемешивают. Причем перемешивание карналлитовой пыли в расплавленной смеси отработанного электролита и хлорида магния проводят сжатым воздухом. Затем проводят отстаивание с получением сырья для электролитического получения магния и хлора. Технический результат заключается в снижении затрат на электроэнергию и в рациональном использовании отходов производства. 2 з.п. ф-лы.

2395456
выдан:
опубликован: 27.07.2010
ПОЛИХЛОРЦИНКАТЫ МЕТАЛЛОВ IIА ГРУППЫ

Изобретение может быть использовано в химической промышленности. Полихлорцинкаты металлов IIА группы получены взаимодействием хлоридов металлов IIА группы с хлоридом цинка в среде диэтилового эфира и соответствуют общей химической формуле nMCl2·ZnCl2·mEt2O, в которой при М=Mg n=1, m=2; при М=Са, Sr n=1, m=4; при М=Ва n=2, m=6. Указанные химические соединения пригодны для использования в качестве реагентов для очистки нефтепродуктов и природного газа от меркаптанов и сероводорода, катализаторов в процессах хлорметилирования и алкилирования ароматических углеводородов, исходных веществ при получении гидридов металлов, 6 табл.

2395455
выдан:
опубликован: 27.07.2010
ПОЛИХЛОРАЛЮМИНАТЫ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Изобретение может быть использовано в химической промышленности. Полихлоралюминаты щелочноземельных металлов получены взаимодействием хлоридов щелочноземельных металлов с хлоридом алюминия в среде диэтилового эфира и соответствуют общей химической формуле МСl2·4АlСl3·nЕt2 O, в которой при М=Са n=4,5; при М=Sr n=1, 1,5; при М=Ва n=2,5. Указанные химические соединения пригодны для использования в качестве реагентов для очистки нефтепродуктов и природного газа от меркаптанов и сероводорода, катализаторов в процессах хлорметилирования и алкилирования ароматических углеводородов, исходных веществ при получении гидридов металлов. 6 табл.

2395454
выдан:
опубликован: 27.07.2010
Наверх