способ получения катализатора для низкотемпературного синтеза метанола

Классы МПК:B01J37/08 термообработка
B01J23/80 с цинком, кадмием или ртутью
B01J23/86 хром
B01J23/885 и медью
B01J23/888 вольфрам
C07C31/04 метиловый спирт 
Автор(ы):, , , , , ,
Патентообладатель(и):Институт катализа им. Г.К. Борескова СО РАН,
Акционерное общество закрытого типа "ОКАТ"
Приоритеты:
подача заявки:
1997-03-26
публикация патента:

Изобретение относится к производству катализаторов для процесса низкотемпературного синтеза метанола. Сущность изобретения: катализатор получают терморазложением при 250-450°С смешанного гидроксокарбоната меди-цинка-вольфрама-хрома и/или алюминия со структурой типа гидроцинкита-аурихальцита. Катализатор имеет состав (мольные доли): Сu - 0,30-0,60; Zn - 0,30-0,62; W - 0,01-0,02; Ме+3 - 0,08-0,15, О - n, где Me - Al+Cr или Al; n - по стехиометрии. Технический результат - разработка нового способа получения оксидного катализатора, позволяющего обеспечить не только его максимальную активность и селективность, но и максимальную устойчивость. 3 табл.
Рисунок 1, Рисунок 2

Формула изобретения

Способ получения катализатора для низкотемпературного синтеза метанола терморазложением при 250 - 450oC смешанного гидроксосоединения меди-цинка-алюминия и/или хрома с последующим таблетированием, отличающийся тем, что в качестве смешанного гидроксосоединения используют гидроксокарбонат меди-цинка-вольфрама-алюминия и/или хрома со структурой типа гидроцинкита-аурихальцита, при этом получают катализатор, состав которого соответствует эмпирической формуле

Cu0,30-0,60Zn0,30-0,62W0,01-0,02Me0,08-0,15On,

где Ме - алюминий и/или хром;

n - по стехиометрии.

Описание изобретения к патенту

Использование: нефтехимия, в частности получение катализаторов для низкотемпературного синтеза метанола.

Сущность изобретения: катализатор получают терморазложением гидроксокарбоната меди-цинка-алюминия и/или хрома, содержащего 1-2 ат% вольфрама, со структурой типа гидроцинкита-аурихальцита при 250-450oC. Состав катализатора соответствует эмпирической формуле

Cu0,30-0,60Zn0,30-0,62W0,01-0,02 Me0,08-0,15On,

где Me - алюминий и/или хром, n - по стехиометрии, 2 таблицы.

Изобретение относится к производству катализаторов для процесса синтеза метанола при низких температурах и давлении.

Для процесса низкотемпературного синтеза используют оксидные медь-цинк-алюминиевые и медь-цинк-хромовые катализаторы (Технология синтетического метанола/Под ред. проф. Караваева М.М.- M.: Химия, 1984, c. 240; Xимические продукты на основе синтез-газа.- M.: Химия, 1987, c. 248). Условия, получения определяют активность, селективность и устойчивость в условиях реакции, а следовательно, и срок службы катализаторов. Как правило, медьсодержащие катализаторы имеют высокую активность и селективность, но низкую устойчивость и, следовательно, низкий срок службы. Кроме того, не всегда воспроизводятся свойства катализаторов из разных партий. Это объясняется тем, что в процессе получения возможно образование нескольких типов оксидных медьсодержащих соединений с разными свойствами.

В работе (RU 2055639 C1, 10.03.96) предлагается получать медьсодержащий катализатор синтеза метанола терморазложением соосажденного смешанного гидроксоалюмината меди-цинка. Способ заключается в следующем.

Смешанное гидроксосоединение меди-цинка и алюминия и/или хрома получают методом соосаждения из смеси 10%-ных растворов нитратов металлов 10%-ным раствором карбоната аммония при постоянном pH = 6,9-7,1, постоянной температуре 70-80oC и непрерывном перемешивании. Осадок отмывают, фильтруют, сушат, затем прокаливают в токе сухого воздуха при 250-450oC и таблетируют с добавлением графита. Полученный катализатор имеет мольное соотношение компонентов Cu:Zn:Me = 30-55:30-62:8-15, где Me - Al и Cr или Al, или Cr.

Этот метод обеспечивает получение катализатора с высокой активностью и селективностью, предоставляет возможность проводить контроль качества катализаторной массы на всех этапах приготовления катализатора, но устойчивость полученного катализатора недостаточно высока.

Целью изобретения является разработка нового способа получения оксидного катализатора, позволяющего обеспечить не только его максимальную активность, селективность и воспроизводимость свойств, но и максимальную устойчивость.

Предлагаемый способ получения катализатора заключается в следующем. Терморазложению при 250-450oC подвергают смешанный гидроксокарбонат меди-цинка-вольфрама-алюминия и/или хрома со структурой типа гидроцинкита-аурихальцита состава

Me(OH)6(CO3)2способ получения катализатора для низкотемпературного   синтеза метанола, патент № 2161536nH2O

где Me=Cu+2, Zn+2, W+6, Al и/или Cr.

Получить смешанный гидроксокарбонат указанного состава и структуры можно несколькими методами: соосаждением, распылительной сушкой-прокалкой смеси растворов солей, терморазложением водных растворов аммиачно-карбонатных комплексов меди-цинка в присутствии соединений алюминия и/или хрома. Мы выбрали метод соосаждения из растворов солей меди, цинка, алюминия и/или хрома раствором карбоната или бикарбоната аммония, натрия или калия или их смесью с последующей пропиткой отмытого осадка раствором кремневольфрамовой гетерополикислоты.

Соли меди, цинка, алюминия и/или хрома, предпочтительно нитраты, взятые в количествах, обеспечивающих желательное соотношение компонентов в катализаторе, растворяют в воде и смешивают растворы. Концентрации растворов 100-200 г/л. Отдельно растворяют в воде карбонат или бикарбонат аммония, натрия или калия, концентрация раствора - 100 г/л. Соосаждание смеси растворов нитратов раствором карбоната проводят в реакторе-осадителе при постоянном pH = 6,0 - 8,0, постоянной температуре в интервале 20-85oC и постоянном перемешивании. Химический анализ показывает, что выбранные условия обеспечивают полноту осаждения катионов металлов. Полученный осадок промывают, фильтруют, пропитывают раствором кремневольфрамовой гетерополикислоты и сушат при температуре 80-100oC. Осадок подвергают рентгенофазовому и термическому анализу. На дифрактограмме соединения со структурой типа гидроцинкита-аурихальцита имеется характерный набор максимумов, соответствующий межплоскостным расстояниям, представленным в табл. А.

В зависимости от состава смешанного гидроксосоединения значения d могут слабо отклоняться от приведенных в табл. A.

На термограммах разложению гидроксокарбоната со структурой гидроцинкита-аурихальцита соответствует эндотермический эффект с максимумом при 270-300oC, сопровождающийся потерей около 30% массы.

Полученный осадок с заданной структурой прогревают в токе воздуха или инертного газа при 250-450oC. При этом получается катализаторная масса в виде порошка. Порошок катализатора таблетируют и проводят измерение каталитической активности.

Измерение каталитической активности проводят в проточно-циркуляционных установках при атмосферном давлении и при давлении 50 атм. при 220oC.

Реакционная смесь имеет состав CО:CO2:N2:H2= 20:5:5:70. Скорость реакции синтеза метанола при атмосферном давлении на разных образцах катализаторов сравнивали при постоянной концентрации метанола 1способ получения катализатора для низкотемпературного   синтеза метанола, патент № 216153610-3 об.%. Объемная скорость подачи сырья при испытании под давлением 50 атм. - 20000 ч-1. Термическую устойчивость катализаторов характеризовали коэффициентом термической устойчивости (КТУ) - отношением скорости реакции после перегрева катализатора в реакционной среде при 380oC в течение 2 ч к первоначальной скорости реакции.

Отличительным признаком способа является использование для получения катализатора смешанного гидроксокарбоната меди-цинка-вольфрама-хрома и/или алюминия со структурой типа гидроцинкита-аурихальцита.

Сущность способа иллюстрируется следующими примерами.

Пример 1. Терморазложению подвергают гидроксокарбонат меди-цинка-вольфрама-хрома с соотношением компонентов Cu:Zn:W:Cr=30:60:1:9 (здесь и далее соотношение атомное).

Для получения гидроксосоединения заданного состава проводят соосаждение смеси 10%-ных водных растворов нитратов: 517 мл нитрата меди, 1046 мл нитрата цинка, 198 мл нитрата хрома.

В качестве осадителя используют 10%-ный раствор карбоната аммония. Для приготовления растворов и отмывки осадка используют дистиллированную или деминерализованную воду.

Осаждение проводят при 70-80oC, pH = 6,9-7,1, при постоянном перемешивании. Полученный осадок отмывают, фильтруют и сушат на воздухе при 80-100oC 10-12 ч. Высушенный образец пропитывают 120 мл водного раствора кремневольфрамовой гетерополикислоты (ГПК) H4[SiW12O40] , содержащего 2,4 г ГПК, что обеспечивает заданное содержание вольфрама в ГПК. Образец высушивают и анализируют методами РФА и ДТА. Получается гидроксокарбонат меди-цинка-хрома со структурой типа гидроцинкита-аурихальцита. Результаты фазового анализа приведены в табл. 1. Терморазложение проводят при 450oC в течение 4 ч в токе сухого воздуха. Полученную катализаторную массу в виде порошка смешивают с графитом, таблетируют и помещают в установку для измерения каталитической активности. Результаты измерения каталитической активности приведены в табл. 2.

Пример 2. Терморазложению подвергают гидроксокарбонат меди-цинка-марганца-хрома с соотношением Cu:Zn:W:Al=45:45:1:9.

Для получения гидроксосоединения заданного состава проводят осаждение смеси 10%-ных растворов солей: 775 мл нитрата меди, 784 мл нитрата цинка, 177 мл нитрата алюминия.

В качестве осадителя используют 10%-ный раствор карбоната аммония. Осаждение и все последующие операции проводят как в примере 1, но температура терморазложения - 250oC. Результаты фазового анализа и каталитического свойства приведены в табл. 1 и 2.

Пример 3. Терморазложению подвергают гидроксосоединение меди-цинка-марганца-алюминия с соотношением Cu:Zn:W:Cr=60:30:2:8.

Для получения гидроксосоединения заданного состава проводят осаждение смеси 10%-ных растворов солей: 1033 мл нитрата меди, 523, мл нитрата цинка и 176 мл нитрата хрома.

В качестве осадителя используют 10%-ный раствор карбоната аммония. Осаждение и все последующие операции проводят как в примере 1, но количество ГПК в водном растворе - 4,8 г. Температура терморазложения - 350oC. Результаты фазового анализа и каталитические свойства приведены в табл. 1 и 2.

Пример 4. Терморазложению подвергают гидроксосоединение меди-цинка-вольфрама-алюминия-хрома с соотношением Cu:Zn:W:Al:Cr=50:34:1:8:7.

Для получения гидроксосоединения заданного состава проводят осаждение смеси 10%-ных растворов солей: 861 мл нитрата меди, 593 мл нитрата цинка, 157 мл нитрата алюминия и 153 мл нитрата хрома.

В качестве осадителя используют 10%-ный раствор карбоната аммония. Осаждение и все последующие операции проводят как в примере 1, но температура терморазложения - 350oC. Результаты фазового анализа и каталитические свойства приведены в табл. 1 и 2.

Как видно из табл. 2, медь-цинк-вольфрам-алюмохромовые оксидные катализаторы, полученные по предлагаемому методу, характеризуются высокой каталитической активностью и устойчивостью.

Предложенный способ получения обеспечивает не только высокую активность, селективность и устойчивость катализаторов, но и предоставляет возможность проводить контроль качества катализаторной массы на всех этапах приготовления катализатора, что позволяет добиваться высокой воспроизводимости свойств для разных партий катализаторов.

Источники информации

1. Технология синтетического метанола /Под ред. проф. Караваева М.М.- М. : Химия, с. 240, 1984.

2. Химические продукты на основе синтез-газа.- М.: Химия, с. 248, 1987.

3. Патент Российской Федерации N 2055639. Бюл. N 7, 10.03.96.

Класс B01J37/08 термообработка

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
способ активации молибден-цеолитного катализатора ароматизации метана -  патент 2525117 (10.08.2014)
способ получения каталитического покрытия для очистки газов -  патент 2522561 (20.07.2014)
способ получения катализатора полимеризации эпсилон-капролактама -  патент 2522540 (20.07.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)
катализатор на подложке из оксида алюминия, с оболочкой из диоксида кремния -  патент 2520223 (20.06.2014)

Класс B01J23/80 с цинком, кадмием или ртутью

Класс B01J23/86 хром

способ получения катализатора синтеза углеводородов и его применение в процессе синтеза углеводородов -  патент 2502559 (27.12.2013)
способ получения шпинелей на основе феррита-хромита цинка -  патент 2477655 (20.03.2013)
катализатор риформинга углеводородов и способ получения синтез-газа с использованием такового -  патент 2475302 (20.02.2013)
способ получения этилацетата -  патент 2451007 (20.05.2012)
способ активации катализатора для получения фторсодержащих углеводородов -  патент 2449832 (10.05.2012)
способ непрерывного, гетерогенно катализируемого, частичного дегидрирования, по меньшей мере, одного дегидрируемого углеводорода -  патент 2436757 (20.12.2011)
способ регенерации металлоксидных промышленных катализаторов органического синтеза -  патент 2414301 (20.03.2011)
катализатор, способ его приготовления и способ фторирования галогенированных углеводородов -  патент 2402378 (27.10.2010)
катализатор, способ его приготовления и способ очистки газовых выбросов от диоксида серы -  патент 2372986 (20.11.2009)
катализатор и способ восстановления диоксида серы -  патент 2369435 (10.10.2009)

Класс B01J23/885 и медью

способ получения катализатора дожига дизельной сажи -  патент 2455069 (10.07.2012)
способ получения этилацетата -  патент 2451007 (20.05.2012)
цеолитсодержащий катализатор, способ его получения и способ конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола -  патент 2446882 (10.04.2012)
катализатор для получения сложных эфиров карбоновых кислот, способ его получения и способ получения сложных эфиров карбоновых кислот -  патент 2428251 (10.09.2011)
высокотемпературные катализаторы конверсии на основе шпинели -  патент 2305006 (27.08.2007)
катализатор и способ получения диметилового эфира и метанола из синтез-газа -  патент 2218988 (20.12.2003)
способ получения катализатора на основе никель-медного хромита -  патент 2207905 (10.07.2003)
катализатор гидроочистки нефтяных фракций и способ его получения -  патент 2197323 (27.01.2003)
катализатор низкотемпературной конверсии оксида углерода и способ его получения -  патент 2175265 (27.10.2001)
способ приготовления катализатора для среднетемпературной конверсии оксида углерода с водяным паром -  патент 2157731 (20.10.2000)

Класс B01J23/888 вольфрам

каталитическая система и способ гидропереработки тяжелых масел -  патент 2525470 (20.08.2014)
лакунарный гетерополианион структуры кеггина на основе вольфрама для гидрокрекинга -  патент 2509729 (20.03.2014)
смешанные оксидные катализаторы в виде полых тел -  патент 2491122 (27.08.2013)
способ регенерации катализатора, используемого при дегидратации глицерина -  патент 2484895 (20.06.2013)
цеолитсодержащий катализатор, способ его получения и способ конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола -  патент 2446882 (10.04.2012)
способ получения акролеина гетерогенно катализированным окислением в газовой фазе пропена -  патент 2373993 (27.11.2009)
промотированный алюмосиликатный катализатор и улучшенный способ обработки углеводородного сырья -  патент 2372984 (20.11.2009)
носитель катализатора и каталитическая композиция, способы их получения и применения -  патент 2366505 (10.09.2009)
мезопористые материалы с активными металлами -  патент 2334554 (27.09.2008)
способ получения каталитической композиции соосаждением, каталитическая композиция и способ гидрообработки углеводородного сырья -  патент 2242283 (20.12.2004)

Класс C07C31/04 метиловый спирт 

способ получения метанола -  патент 2522560 (20.07.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2520218 (20.06.2014)
способ синтеза метанола -  патент 2519940 (20.06.2014)
способ и установка для получения метанола с усовершенствованной секцией дистилляции -  патент 2512107 (10.04.2014)
способ совместного получения синтетических жидких углеводородов и метанола и установка для его осуществления, интегрированная в объекты промысловой подготовки нефтяных и газоконденсатных месторождений -  патент 2505475 (27.01.2014)
способ получения метанола из углеводородного газа газовых и газоконденсатных месторождений и комплексная установка для его осуществления -  патент 2503651 (10.01.2014)
способ прямой конверсии низших парафинов c1-c4 в оксигенаты -  патент 2485088 (20.06.2013)
способ получения метанола -  патент 2478604 (10.04.2013)
способ регенерации водометанольного раствора на нефтегазоконденсатном месторождении -  патент 2474464 (10.02.2013)
способ получения метанола -  патент 2472765 (20.01.2013)
Наверх