катализатор для конверсии низкомолекулярных спиртов в высокооктановый бензин и пропан-бутановую фракцию, способ его получения и способ конверсии низкомолекулярных спиртов в высокооктановый бензин и пропан-бутановую фракцию
Классы МПК: | B01J23/88 молибден B01J23/06 цинка, кадмия или ртути B01J23/72 медь B01J23/18 мышьяк, олово или висмут B01J21/04 оксид алюминия B01J37/04 смешивание C07C1/20 из органических соединений, содержащих только атомы кислорода в качестве гетероатомов |
Автор(ы): | Ерофеев Владимир Иванович (RU), Третьяков Валентин Филиппович (RU), Коваль Любовь Михайловна (RU), Тихонова Наталья Васильевна (RU), Лермонтов Анатолий Сергеевич (RU), Бурдейная Татьяна Николаевна (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью "Томскнефтехим" (ООО "Томскнефтехим") (RU) |
Приоритеты: |
подача заявки:
2007-01-09 публикация патента:
10.08.2008 |
Изобретение относится к нефтехимической промышленности, а именно к способам получения высокооктановых бензинов и пропан-бутановой фракции из низкомолекулярных спиртов (метанол, этанол), которые используются в нефтепереработке и нефтехимии. Описан катализатор для конверсии низкомолекулярных спиртов в высокооктановый бензин и пропан-бутановую фракцию, содержащий железоалюмосиликат типа MFI с силикатным модулем SiO2/Al 2О3=20÷160, SiO 2/Fe2O3=30÷5000, модифицирующий компонент, упрочняющую добавку, выбранную из оксида бора, фосфора или их смеси, связующий компонент - оксид алюминия, при этом в качестве модифицирующего компонента он содержит смесь оксидов меди, цинка и олова, катализатор сформирован в процессе механохимической, высокотемпературной и термопаровой обработок и имеет следующий состав, мас.%, в пересчете на оксид: железоалюмосиликат с силикатным модулем SiO2/Al 2О3=20÷160, SiO 2/Fe2O3=30÷5000 60,0÷80,0; модифицирующий компонент 0,1÷10,0; оксид бора, фосфора или их смесь 0,5÷5,0; оксид алюминия - остальное. Описан способ получения катализатора, включающий синтез железоалюмосиликата типа MFI с силикатным модулем SiO2/Al 2O3=20÷160, SiO 2/Fe2O3=30÷5000 гидротермальной кристаллизацией реакционной смеси, содержащей источники окиси кремния, окиси алюминия, окиси железа, окиси щелочного металла, гексаметилендиамин, «затравку» цеолита и воду, с дальнейшим смешением полученного железоалюмосиликата с соединениями модифицирующего компонента, с соединениями упрочняющей добавки и связующим, с последующей механохимической обработкой, формовкой катализаторной массы, сушкой и высокотемпературной обработкой, причем в качестве модифицирующего компонента используется смесь соединений меди, цинка и олова и катализатор подвергнут термопаровой обработке водяным паром при 450÷550°С, с объемной скоростью подачи воды 1÷2 ч-1 в течение 2÷16 ч. Описан также способ конверсии низкомолекулярных спиртов в высокооктановый бензин и пропан-бутановую фракцию в присутствии описанного выше катализатора при температуре 300-550°С, объемной скорости подачи низкомолекулярных спиртов 0,5÷5,0 ч-1 и давлении 0,1÷1,5 МПа. Технический эффект - повышение активности и селективности катализатора. 3 н.п. ф-лы, 1 табл.
Формула изобретения
1. Катализатор для конверсии низкомолекулярных спиртов в высокооктановый бензин и пропан-бутановую фракцию, содержащий железоалюмосиликат типа MFI с силикатным модулем SiO2/Al 2O3=20÷160, SiO 2/Fe2O3=30÷5000, модифицирующий компонент, упрочняющую добавку, выбранную из оксида бора, фосфора или их смеси, связующий компонент - оксид алюминия, отличающийся тем, что в качестве модифицирующего компонента он содержит смесь оксидов меди, цинка и олова, катализатор сформирован в процессе механохимической, высокотемпературной и термопаровой обработок и имеет следующий состав, мас.%, в пересчете на оксид,
Железоалюмосиликат с силикатным модулем | |
SiO2 /Al2О3=20÷160, SiO2/Fe2O 3=30÷5000 | 60,0÷80,0 |
Модифицирующий компонент | 0,5÷10,0 |
Упрочняющая добавка | 0,5÷5,0 |
Оксид алюминия | остальное |
2. Способ получения катализатора по п.1, включающий синтез железоалюмосиликата типа MFI с силикатным модулем SiO2/Al 2О3=20÷160, SiO 2/Fe2O3=30÷5000 гидротермальной кристаллизацией реакционной смеси, содержащей источники окиси кремния, окиси алюминия, окиси железа, окиси щелочного металла, гексаметилендиамин, «затравку» цеолита и воду, с дальнейшим смешением полученного железоалюмосиликата с соединениями модифицирующего компонента, с соединениями упрочняющей добавки и связующим, с последующей механохимической обработкой, формовкой катализаторной массы, сушкой и высокотемпературной обработкой, отличающийся тем, что в качестве модифицирующего компонента используется смесь соединений меди, цинка и олова и катализатор подвергнут термопаровой обработке водяным паром при 450÷550°С, с объемной скоростью подачи воды 1÷2 ч-1 в течение 2÷16 ч.
3. Способ конверсии низкомолекулярных спиртов в высокооктановый бензин и пропан-бутановую фракцию в присутствии катализатора, отличающийся тем, что используют катализатор по п.1 и процесс конверсии низкомолекулярных спиртов в высокооктановый бензин и пропан-бутановую фракцию проводят при температуре 300-550°С, объемной скорости подачи низкомолекулярных спиртов 0,5÷5,0 ч-1 и давлении 0,1÷1,5 МПа.
Описание изобретения к патенту
Изобретение относится к нефтехимической промышленности, а именно к способам получения высокооктановых бензинов и пропан-бутановой фракции из низкомолекулярных спиртов (метанол, этанол), которые используются в нефтепереработке и нефтехимии.
В настоящее время основным промышленным процессом получения высокооктановых бензинов и/или ароматических углеводородов является каталитический риформинг различных прямогонных бензиновых фракций нефти или газоконденсатов на алюмоплатиновых или модифицированных алюмоплатиновых катализаторах. Основными недостатками процесса каталитического риформинга прямогонных бензинов являются использование дорогостоящего Pt-содержащего катализатора, водородсодержащего газа и высокая чувствительность Pt-катализатора к микропримесям серы, азота и другим примесям в исходном углеводородном сырье, что требует предварительной глубокой очистки сырья от этих примесей.
В связи с созданием высококремнеземных цеолитов типа ZSM-5, ZSM-11 и других, обладающих микропористой структурой и специфическими каталитическими свойствами, стала возможной разработка новых катализаторов и процессов, позволяющих перерабатывать углеводородное сырье (углеводороды С2-С 10 и выше) и кислородсодержащие органические соединения в высокооктановые бензины и/или ароматические углеводороды.
Известен катализатор и способ получения жидких углеводородов из диметилового эфира (Пат. RU N2160160, В01J 29/40, 1999).
При получении жидких углеводородов из диметилового эфира используют катализатор на основе кристаллического алюмосиликата типа пентасила с силикатным модулем SiO2/Al 2O3=25÷100, содержащий 0,05÷0,1 мас.% оксида натрия и связующий компонент, который дополнительно содержит оксид цинка и оксиды редкоземельных элементов (РЗЭ) при следующем соотношении компонентов, мас.%: оксид цинка 0,5÷3,0; оксиды РЗЭ 0,1÷5,0; кристаллический алюмосиликат 65,0÷70,0; связующее - остальное. Катализатор предварительно подвергают активации на воздухе при температуре 540÷560°С. Контакт диметилового эфира с катализатором осуществляют при объемной скорости подачи диметилового эфира 250÷1100 ч -1 (по газу), давлении 0,1÷10,0 МПа и температуре 250÷400°С.
Известен катализатор получения жидких углеводородов из диметилового эфира (Пат. RU N2160161, В01J 29/46, 2000).
Для получения жидких углеводородов из диметилового эфира используют катализатор на основе кристаллического алюмосиликата типа пентасила с силикатным модулем SiO2 /Al2O3=25÷100, содержащий 0,05÷0,1 мас.% оксида натрия и связующий компонент, который дополнительно содержит оксид цинка, оксиды РЗЭ и оксид кобальта при следующем соотношении компонентов, мас.%: оксид цинка 0,5÷3,0; оксиды РЗЭ 0,1÷5,0; оксид кобальта 0,05÷2,5; кристаллический алюмосиликат 65,0÷70,0; связующее - остальное. Также для получения жидких углеводородов из диметилового эфира используют другой катализатор на основе кристаллического алюмосиликата типа пентасила с силикатным модулем SiO2 /Al2O3=25÷100, содержащий 0,05÷0,1 мас.% оксида натрия и связующий компонент, который дополнительно содержит оксид цинка, оксиды РЗЭ и хромит меди при следующем соотношении компонентов, мас.%: оксид цинка 0,5÷3,0; оксиды РЗЭ 0,1÷5,0; хромит меди 0,1÷0,3; кристаллический алюмосиликат 65,0÷70,0; связующее - остальное. В качестве связующего компонента катализатор содержит синтетический алюмосиликат или неорганический оксид, например оксид алюминия или оксид кремния. Катализатор предварительно подвергают активации на воздухе при температуре 540÷560°С. Полученные катализаторы с предлагаемым соотношением компонентов используют для получения жидких углеводородов из диметилового эфира при объемной скорости подачи диметилового эфира или газов, содержащих диметиловый эфир, 250÷1100 ч-1 (по газу), давлении 0,1÷10,0 МПа и температуре 250÷400°С.
Недостатком данных изобретений является использование диметилового эфира в качестве сырья для получения жидких углеводородов, который является дорогостоящим и малотоннажным продуктом, низкие объемные скорости подачи сырья (диметилового эфира), а соответственно и низкий выход готового продукта.
Известен катализатор получения жидких углеводородов из низкомолекулярных кислородсодержащих органических соединений (Пат. RU N2189858, В01J 29/40, 2001).
Катализатор получения жидких углеводородов из низкомолекулярных кислородсодержащих органических соединений содержит кристаллический алюмосиликат типа пентасил с силикатным модулем SiO2 /Al2O3=25÷100, оксид натрия, оксид цинка, оксиды РЗЭ, связующее при следующем соотношении компонентов, мас.%: кристаллический алюмосиликат 63,0÷70,0; оксид натрия 0,12÷0,3; оксид цинка 0,5÷3,0; оксиды РЗЭ 0,1÷3,0; связующее - остальное. Каждому значению мольного отношения SiO2/Al 2O3 соответствует определенный диапазон значений содержания оксида натрия. В качестве оксидов РЗЭ катализатор содержит оксид церия СеО2, оксид лантана La2О3, оксид неодима Nd2O3 и оксид празеодима Pr6O11 при следующем соотношении компонентов, мол.%: СеО2 - 3,0; La2O3 - 65,0; Nd2O3 - 21,0; Pr 6O11 - остальное. В качестве связующего катализатор может содержать синтетические алюмосиликаты или оксид алюминия Al2О3, или оксид кремния SiO2, или смесь Al 2O3 и SiO2. Полученный катализатор с указанным выше соотношением компонентов используют для получения жидких углеводородов из низкомолекулярных кислородсодержащих органических соединений с числом атомов углерода в молекуле C1÷С6 при объемной скорости подачи жидкого сырья 0,5÷3,0 ч -1, давлении 0,1÷10,0 МПа и температуре 250÷400°С. В качестве сырья используют диметиловый эфир, метанол, этанол, смесь спиртов.
Основным недостатком данного катализатора является сложность приготовления катализатора с заданным оптимальным содержанием оксида натрия.
Известен способ получения высококремнеземных цеолитов типа ZSM-5 (Пат. RU N1527154, С01В 33/28, 1987). Высококремнеземные цеолиты типа ZSM-5 с силикатным модулем SiO2 /Al2О3=30÷200 получают гидротермальной кристаллизацией реакционной смеси при 120÷180°С в течение 1÷7 сут, содержащей источники окиси кремния, окиси алюминия, окиси щелочного металла, гексаметилендиамин и воду. Степень кристалличности получаемого продукта 85÷100%, каталитическая стабильность при конверсии метанола 460÷1100 ч. Для повышения стабильности работы высококремнеземные цеолиты в Н-форме подвергают механическому помолу до размера частиц 0,1÷1,0 мкм, прессуют, отбирают фракцию 1÷2 мм, загружают в реактор со стационарным слоем и подвергают термопаровой обработке водяным паром при 520°С в течение 50 ч, затем снижают температуру до 390°С и процесс конверсии метанола проводят при 390°С и объемной скорости 0,8÷0,9 ч-1.
Недостатком полученного катализатора является недостаточно высокий выход жидких продуктов - высокооктанового бензина из метанола.
Наиболее близким к предлагаемому изобретению является катализатор и способ получения катализатора для превращения алифатических углеводородов С2÷С 12 в высокооктановый бензин и/или ароматические углеводороды, принятый за прототип (Пат. RU N2235590, В01J 29/46, 2003). Катализатор для превращения алифатических углеводородов С 2÷C12 в высокооктановый бензин и/или ароматические углеводороды, содержащий цеолит типа ZSM-5, модифицирующий компонент, упрочняющую добавку и связующий компонент - оксид алюминия; в качестве цеолита содержит железоалюмосиликат с силикатным модулем SiO2/Al 2O3=20÷160, SiO 2/Fe2О3=30÷5000; в качестве модифицирующего компонента содержит, по крайней мере, один оксид элемента, выбранный из группы: медь, цинк, галлий, лантан, молибден, рений; в качестве упрочняющей добавки содержит оксид бора, фосфора или их смеси; катализатор сформирован в процессе термообработки и имеет следующий состав, мас.% (в пересчете на оксид):
Железоалюмосиликат с силикатным модулем | |
SiO 2/Al2О3=20÷160, SiO2/Fe2O 3=30÷5000 | 60,0÷80,0 |
Модифицирующий компонент | 0,1÷10,0 |
Оксид бора, фосфора или их смесь | 0,5÷5,0 |
Оксид алюминия | Остальное |
Железоалюмосиликат со структурой цеолита типа ZSM-5 с силикатным модулем SiO2/Al 2O3=20÷160, SiO 2/Fe2О3=30÷5000 получают гидротермальной кристаллизацией реакционной смеси при 120÷180°С в течение 1÷6 сут, содержащей источники окиси кремния, окиси алюминия, окиси железа, окиси щелочного металла, гексаметилендиамин и воду, с дальнейшим сухим смешением полученного железоалюмосиликата с соединениями модифицирующих компонентов, упрочняющих добавок и связующего с последующей механохимической обработкой в вибромельнице в течение 0,1÷72 ч, формовкой катализаторной массы, сушкой при 100÷110°С в течение 0,1÷24 ч и прокалкой при 550÷600°С в течение 0,1÷24 ч.
Недостатком изобретения является недостаточно высокий выход жидких продуктов - высокооктанового бензина из низкомолекулярных кислородсодержащих органических соединений, в частности из метанола.
Получение высокооктанового бензина из низкомолекулярных кислородсодержащих органических соединений (метанола, этанола) является сложным процессом и протекает через ряд стадий: дегидратация, крекинг, ароматизация, изомеризация и другие. Процесс конверсии низкомолекулярных кислородсодержащих органических соединений (метанола, этанола) осуществляется при температуре 350÷600°С, давлении 0,1÷1,5 МПа и объемной скорости подачи жидкого сырья 0,5÷6,0 ч-1. Основными продуктами конверсии низкомолекулярных кислородсодержащих органических соединений (метанола, этанола) на различных цеолитсодержащих катализаторах являются жидкие углеводороды и газообразные углеводороды С1÷С 4. Эффективность процесса тем выше, чем больше выход жидких углеводородов, а в газовой фазе - повышенное содержание пропан-бутановой фракции (ПБФ), которую можно использовать в качестве топлива или сырья для процессов нефтепереработки и газохимии.
Наиболее близким способом к предлагаемому является способ получения высокооктановых бензиновых фракций и ароматических углеводородов (Пат. RU N2163624, С10G 35/095, 1998).
Согласно данному способу превращение углеводородного сырья и/или кислородсодержащих соединений проводят при температуре 280÷460°С, давлении 0,1÷4,0 МПа и в присутствии водородсодержащего газа с катализатором, содержащим цеолит со структурой ZSM-5 или ZSM-11, в кристаллическую решетку которого входят атомы алюминия и железа, с последующим разделением продуктов контактирования на газообразные и жидкие фракции, стадию контактирования осуществляют с катализатором, содержащим цеолит общей эмпирической формулы (0,02÷0,09)Na 2O·Al2O3 ·(0,01÷1,13)Fe2O 3·(27÷212)SiO2·kH 2О, модифицированный элементами или соединениями элементов V, VI, VII групп в количестве 0,05÷5,0 мас.%. Сырьем процесса могут быть углеводороды C2÷C 12 и их фракции и/или кислородсодержащие органические соединения (спирты, эфиры и т.д.) и их смеси.
Недостатками данного способа, принятого за прототип, являются недостаточно высокий выход высокооктановых бензиновых фракций из углеводородного сырья и кислородсодержащих соединений.
Задача изобретения - получение активного и селективного катализатора для конверсии низкомолекулярных спиртов (метанола, этанола) в высокооктановый бензин и ПБФ и разработка способа получения высокооктанового бензина и ПБФ из низкомолекулярных спиртов (метанола, этанола).
Технический результат достигается тем, что предлагаемый катализатор содержит железоалюмосиликат типа MFI с силикатным модулем SiO 2/Al2O3=20÷160, SiO2/Fe2O 3=30÷5000; в качестве упрочняющей добавки содержит оксид бора, фосфора или их смеси в количестве 0,5÷5,0 мас.%; в качестве модифицирующего компонента содержит смесь оксидов меди, цинка и олова в количестве 0,5÷10,0 мас.%; остальное - связующее вещество бемит или оксид алюминия до 100 мас.%; катализатор сформирован в процессе механохимической, высокотемпературной и термопаровой обработок.
Железоалюмосиликат (ЖАС) типа MFI получают гидротермальной кристаллизацией при 120÷180°С в течение 1÷7 суток реакционной смеси, содержащей источник катионов щелочного металла, окись кремния, окись алюминия, окись железа, гексаметилендиамин, «затравочные» кристаллы цеолита типа MFI и воду. После кристаллизации цеолиты промывают дистиллированной водой, сушат при 110°С в течение 2÷12 ч и прокаливают при 550÷600°С в течение 4÷12 ч.
По данным ИК-спектроскопии и рентгенофазового анализа получаемые ЖАС идентичны цеолиту MFI (ZSM-5).
Для перевода в Н-форму ЖАС декатионируют обработкой 25% раствором NH4Cl (10 мл раствора на 1 г цеолита) при 90°С в течение 2 ч, затем промывают водой, сушат при 110°С в течение 4÷12 ч и прокаливают при 550÷600°С в течение 4÷12 ч.
Цеолитсодержащий катализатор получают сухим смешением Н-формы ЖАС типа MFI с силикатным модулем SiO2/Al2О 3=20÷160, SiO2/Fe 2О3=30÷5000 со смесью соединений меди, цинка, олова в качестве модифицирующего компонента; с соединениями бора, фосфора или их смеси в качестве упрочняющей добавки; с бемитом или оксидом алюминия в качестве связующего; подвергают механохимической обработке в вибромельнице в течение 0,1÷72 ч, после этого формуют, сушат и прокаливают при 550÷600°С в течение 0,1÷24 ч. Под действием механохимической и высокотемпературной обработок смеси ЖАС, смеси соединений модифицирующего компонента, упрочняющей добавки и связующего происходит формирование и образование активного и селективного катализатора ЖАС, модифицированного активными компонентами.
Синтезированные цеолитсодержащие катализаторы как до, так и после смешения с компонентами обрабатывают водяным паром (100 мас.%) при 450÷550°С, с объемной скоростью подачи воды (жидкости) 1÷2 ч-1 в течение 2÷16 ч.
Предлагаемое изобретение иллюстрируется следующими примерами.
Пример 1 (по прототипу). К 100 г жидкого стекла (29% SiO2, 9% Na 2O, 62% H2O) при перемешивании добавляют 5,98 г гексаметилендиамина в 50 мл Н2О, 6,038 г Al(NO3)3·9Н 2О в 80 мл Н2О, 6,04 г Fe(NO 3)3·9H2 O в 100 мл Н2O, 1 г «затравки» высококремнеземного цеолита и приливают 0,1 н. раствор HNO3 . Получают железоалюмосиликат со структурой цеолита типа MFI с силикатным модулем SiO2/Al 2O3=60, SiO2 /Fe2O3=65.
Затем 6,0 г ЖАС с силикатным модулем SiO2 /Al2О3=60, SiO 2/Fe2O3=65 смешивают с 0,533 г Н3 ВО 3, с 4,353 г AlO(ОН) и подвергают механохимической обработке в вибромельнице в течение 48 ч. Полученный порошок формуют, сушат 3÷4 ч при 20÷30°С, затем при 110°С в течение 8 ч и прокаливают на воздухе 12 ч при 550÷600°С.
Полученный цеолитсодержащий катализатор имеет состав, мас.%:
Железоалюмосиликат | 60,0 |
В2O 3 | 3,0 |
Al 2O3 | 37,0 |
Пример 2 (по прототипу). Железоалюмосиликат со структурой цеолита Н-MFI получают так же, как в примере 1, но вместо 6,038 г Al(NO3) 3·9Н2О и 6,04 г Fe(NO 3)3·9Н2 О берут 6,515 г Al(NO3) 3·9Н2О и 0,725 г Fe(NO 3)3·9H2 O. Получают железоалюмосиликат со структурой цеолита типа MFI с силикатным модулем SiO2/Al 2O3=55, SiO2 /Fe2O3=550.
Затем 6,0 г ЖАС с силикатным модулем SiO2 /Al2O3=55, SiO 2/Fe2O3=550 смешивают с 0,177 г Н3ВО 3, с 4,588 г AlO(ОН) и подвергают механохимической обработке в вибромельнице в течение 24 ч. Полученный порошок формуют, сушат 6 ч при 20÷30°С, затем при 110°С в течение 6 ч и прокаливают на воздухе 16 ч при 550÷600°С.
Полученный цеолитсодержащий катализатор имеет состав, мас.%:
Железоалюмосиликат | 60,0 |
В2O 3 | 1,0 |
Al 2О3 | 39,0 |
Пример 3. 6,0 г ЖАС с силикатным модулем SiO2/Al2O 3=55, SiO2/Fe2 O3=550 смешивают с 0,911 г Cu(NO 3)2·3Н2 O, 1,097 г Zn(NO3)2 ·6Н2O, 0,299 г SnCl 2·2Н2O, 0,355 г Н 3 ВО3, 3,529 г AlO(ОН) и подвергают механохимической обработке в вибромельнице в течение 72 ч. Полученный порошок формуют, сушат 4 ч при 20÷30°С, затем при 110°С в течение 12 ч и прокаливают на воздухе 8 ч при 550÷600°С.
Полученный цеолитсодержащий катализатор имеет состав, мас.%:
Железоалюмосиликат | 60,0 |
CuO | 3,0 |
ZnO | 3,0 |
SnO2 | 2,0 |
В2O3 | 2,0 |
Al 2O3 | 30,0 |
Пример 4. Так же, как в примере 3, но катализатор дополнительно обрабатывают водяным паром. Для этого цеолитсодержащий катализатор после прокаливания загружают в реактор и подвергают термопаровой обработке водяным паром (100%) при 480°С, с объемной скоростью подачи воды (жидкости) 1 ч -1 в течение 12 ч.
Пример 5. 6,5 г ЖАС с силикатным модулем SiO2/Al2O 3=55, SiO2/Fe2 O3=5000 смешивают с 0,152 г Cu(NO 3)2·3Н2 О, 1,828 г Zn(NO3)2 ·6H2O, 0,075 г SnCl 2·2Н2О, 0,138 г Н 3PO4, 3,412 г AlO(ОН) и подвергают механохимической обработке в вибромельнице в течение 48 ч. Полученный порошок формуют, сушат 4 ч при 20÷30°С, затем при 110°С в течение 6 ч и прокаливают на воздухе 8 ч при 550÷600°С.
Полученный цеолитсодержащий катализатор имеет состав, мас.%:
Железоалюмосиликат | 65,0 |
CuO | 0,5 |
ZnO | 5,0 |
SnO2 | 0,5 |
P2O5 | 1,0 |
Al 2О3 | 29,0 |
Пример 6. Так же, как в примере 5, но катализатор дополнительно обрабатывают водяным паром. Для этого цеолитсодержащий катализатор после прокаливания загружают в реактор и подвергают термопаровой обработке водяным паром (100%) при 520°С, с объемной скоростью подачи воды (жидкости) 1 ч -1 в течение 8 ч.
Полученные катализаторы испытывают в процессе конверсии низкомолекулярных спиртов (метанола, этанола) в высокооктановый бензин и ПБФ на установке проточного типа со стационарным слоем катализатора при температуре 350÷550°С, объемной скорости подачи сырья 0,5÷5,0 ч -1 и давлении 0,1÷1,5 МПа. В процессе конверсии низкомолекулярных спиртов (метанола, этанола) в высокооктановый бензин и ПБФ с повышением температуры реакции от 350 до 550°С на железоалюмосиликатах типа MFI протекают реакции крекинга, дегидрирования, изомеризации, дегидроциклизации и ароматизации парафиновых углеводородов с образованием преимущественно на первых стадиях процесса олефиновых углеводородов, которые в дальнейшем превращаются в изопарафиновые и алкилароматические углеводороды. Введение в железоалюмосиликат смеси модифицирующего компонента: смеси оксидов меди, цинка и олова в количестве 0,5÷10,0 мас.% позволяет значительно повысить выход высокооктанового бензина в жидкой фазе продуктов и ПБФ - в газовой фазе продуктов конверсии низкомолекулярных спиртов (метанола, этанола), по сравнению с немодифицированным железоалюмосиликатом.
Приведенные в таблице примеры уточняют изобретение, не ограничивая его.
Как видно из примеров N1-7 таблицы, катализаторы N3-6 имеют более высокий выход (78,5÷85,6%) жидких продуктов реакции - высокооктанового бензина из низкомолекулярных спиртов (метанола, этанола), чем катализаторы (примеры 1-2) по прототипу Пат. RU N2235590 и Пат. RU N2163624 (пример 7).
Таким образом, предлагаемые катализаторы для конверсии низкомолекулярных спиртов (метанола, этанола) в высокооктановый бензин и ПБФ на основе железоалюмосиликата типа MFI с силикатным модулем SiO 2/Al2O3=20÷160, SiO2/Fe2O 3=30÷5000 и модифицированные смесью модифицирующего компонента: смеси оксидов меди, цинка и олова в количестве 0,5÷10,0 мас.% позволяют увеличить выход высокооктанового бензина до 78,5÷85,6% и ПБФ до 72,3÷91,3% - в газовой фазе.
Способ получения высокооктанового бензина и ПБФ из низкомолекулярных спиртов (метанола, этанола) в присутствии катализаторов на основе железоалюмосиликата типа МП с силикатным модулем SiO2/Al 2O3=20÷160, SiO 2/Fe2O3=30÷5000 и модифицированные смесью модифицирующего компонента: смеси оксидов меди, цинка и олова в количестве 0,5÷10,0 мас.% позволяет значительно увеличить выход высокооктанового бензина и ПБФ из низкомолекулярных спиртов (метанола, этанола), чем в присутствии катализатора по прототипу Пат. RU N2163624 (пример 7).
Класс B01J23/06 цинка, кадмия или ртути
Класс B01J23/18 мышьяк, олово или висмут
Класс B01J21/04 оксид алюминия
Класс C07C1/20 из органических соединений, содержащих только атомы кислорода в качестве гетероатомов